

Sustainable Building Study Using Whole-System and Life-Cycle Thinking

2012 REPORT TO THE MID-ATLANTIC, REGION 3 OF THE U.S. GENERAL SERVICES ADMINISTRATION

by

Steven Winter Associates • Rocky Mountain Institute • Athena Sustainable Materials Institute

• Deliverables

1) LEED EB O& M and Guiding Principle Analysis

- Submitted December 28, 2011
- Establish a baseline for each building's performance, based on existing conditions, with respect to meeting the GSA's Guiding Principles (GP) for Sustainable Existing Buildings.
- Rate the buildings using the LEED EBOM (version 2009) Checklist and provide a plan to illustrate how the buildings can best achieve LEED EBOM Gold Certification.
- 2) Sustainability Audit and LCCA Projects
 - Submitted January 31, 2012
 - Identify projects and practices necessary to satisfy the Guiding Principles and achieve LEED EBOM certification, including costs to implement the recommendations.
- 3) Sustainable Building Study Report
 - Submitted March 5, 2012
 - To be discussed today

LCA Objectives

1) Benchmark the embodied material and operating energy environmental effects of 3 GSA buildings in Baltimore

- Use readily available LCA tools with the aim to make benchmarking replicable
- Tool and output to provide a basis for assessing potential recommendations going forward
- 2) Monetize the environmental impact of embodied and operational effects (i.e. determine external cost of pollution)
 - Literature review: cast a wide enough net to capture a set of geographically applicable and global effects
 - Provide a range of costs that are applicable to other US locales

Externality Costs Defined

Externality Costs

... Those costs borne by society instead of directly by the producer or consumer of the product or service.

These costs take the form of environmental damage or human health effect "cost adders"

Costs not *internalized* in the price of a good or service

Varied methods –

- Cost of control
- Willingness-to-pay
- Estimating damage effects

Considerable controversy and uncertainty is the norm, not the exception ...

Considerable "value judgment" at play

Tendency to put more value on human life than the biosphere that supports human life

Determining externality costs – a stepwise process

- Consult literature to determine "damages" associated with a sub-set of well study emissions – criteria air pollutants
- 2. Interpolate other costs of emissions within various LC impact categories using "equivalence" effects
- Generate a life cycle inventory of emission flows to air, water and land associated with materials and energy life cycles, calculate impact indicators and apply external costs
- Sum externality costs across the set of LC impact categories to arrive at a total adder cost for material use or energy consumption

Conduct literature review

- Reviewed latest research in Europe and N. America
- Much of the external cost literature addresses criteria air pollutants and GHGs from a fuel life cycle perspective
- Two references stood out
 - Muller, Nicholas Z. and Robert Mendelsohn. "Weighing the Value of a Ton of Pollution." <u>Regulation.</u> Summer 2010: 20-24.
 - National Research Council of the National Academies.
 "Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use". Washington: The National Academies Press, 2009.

Muller and Mendelsohn (2010)

 Calculate marginal damage of 6 air pollutants at the US county level

Pollutant	Marginal	Marginal Damages of Emissions by Spatial Percentile (\$/ton)						
	1 st	25"	50"	75"	99"	99.9"		
Fine Particulate Matter	250	700	1,170	1,970	12,400	41,770		
Course Particulate Matter	60	120	170	280	1,960	6,550		
Nitrogen Oxides	20	180	250	370	1,100	1,780		
Ammonia	100	300	900	2,000	2,062	59,450		
Volatile Organic Compounds	40	120	180	280	1,370	4,540		
Sulfur Dioxide	220	550	970	1,300	4,130	10,860		

1st percentile – small population/rural location, with good air quality 99.9th percentile – large population/urban location, with poor air quality Baltimore is in the 99th percentile

Determined LC impact indicator categories to be supported by the project

- As per available LCA tools & prescribed building sustainability metrics (ISO 21930)
- US EPA TRACI characterization methods provide context

Impact category	Unit equivalence basis (indicator result)	Source of the characterization method	Level of site specificity
Global warming	kg CO_2 - equivalents	TRACI (IPCC,2007)	Global
Acidification	$H^{+ moles}$ - equivalents	TRACI	Local or regional
Ozone depletion	kg CFC-11- equivalents	TRACI	Global
Eutrophication	kg N water- equivalents	TRACI	Local or regional
Human health: respiratory effects	kg PM _{2.5} - equivalents	TRACI	Local or regional
Photochemical smog	kg NO _x - equivalents	TRACI	Local or regional

Using Muller and Mendelsohn (2010) price for Ammonia we interpolate the "equivalent cost" (price) of other emissions contributing to the acidification potential impact category measure by spatial percentile

Substance	Emission	Contibution	Normalizing	N	Marginal Damages of Emissions by Spatial Percentile (\$/ton H+moles)									
	Media	EQ Factor	Cost Factor		1 st		25 th	50 th		75 th		99 th		99.9 th
Ammonia	Air	95.5	1	\$	1.05	\$	3.14	\$	9.42	\$	20.94	\$	21.59	\$ 622.51
Hydrochloric acid	Air	44.7	0.4681	\$	0.49	\$	1.47	\$	4.41	\$	9.80	\$	10.11	\$ 291.37
Hydrofluoric acid	Air	81.3	0.8510	\$	0.89	\$	2.67	\$	8.02	\$	17.82	\$	18.37	\$ 529.77
Hydrogen sulfide	Air	95.5	0.9999	\$	1.05	\$	3.14	\$	9.42	\$	20.94	\$	21.59	\$ 622.48
Nitric acid	Air	25.9	0.2713	\$	0.28	\$	0.85	\$	2.56	\$	5.68	\$	5.86	\$ 168.86
Nitric oxide	Air	61.3	0.6415	\$	0.67	\$	2.02	\$	6.05	\$	13.44	\$	13.85	\$ 399.37
Nitrogen dioxide	Air	40.0	0.4193	\$	0.44	\$	1.32	\$	3.95	\$	8.78	\$	9.05	\$ 261.03
Nitrogen oxides	Air	40.0	0.4193	\$	0.44	\$	1.32	\$	3.95	\$	8.78	\$	9.05	\$ 261.03
Phosphoric acid	Air	49.8	0.5213	\$	0.55	\$	1.64	\$	4.91	\$	10.92	\$	11.25	\$ 324.49
Sulfur dioxide	Air	50.8	0.5319	\$	0.56	\$	1.67	\$	5.01	\$	11.14	\$	11.48	\$ 331.11
Sulfur oxides	Air	50.8	0.5319	\$	0.56	\$	1.67	\$	5.01	\$	11.14	\$	11.48	\$ 331.11
Sulfur trioxide	Air	40.6	0.4255	\$	0.45	\$	1.34	\$	4.01	\$	8.91	\$	9.19	\$ 264.89
Sulfuric acid	Air	33.0	0.3457	\$	0.36	\$	1.09	\$	3.26	\$	7.24	\$	7.46	\$ 215.22

Muller and Mendelsohn (2010) externality costs work for other regional effect measures on a spatial percentile basis

NRC (2009) report used to establish low, mid and high values for global climate change effects – marginal costs ranged by two order of magnitude –

- Low \$1/ton CO₂ equivalent
- Mid \$30/ton CO₂ equivalent
- High \$100/ton CO₂ equivalent

Relied on Maryland Genuine Progress Indicator for cost of Ozone Depletion Potential - \$5,500/ton

\$/ton – **Bold** values applied to Baltimore

Impact Category	Low	Mid	High			
GWP	1	30	100			
ODP		5,500				
	1 st	25 th	50 th	75 th	99 th	99.9 th
AP	1	3	9	21	22	593
EP	6	52	73	107	319	516
SP	32	95	142	221	1,080	3,580
REP	250	700	1170	1970	12,400	41,770

Impact Category	Environmental Impact of 100 kWh of electricity	Mid or 99th percentile External cost \$/kg	External cost \$/100 kWh	External cost \$/kWh
Global Warming Potential (kg CO2 eq)	6.37E+01	\$0.03	\$1.91	\$0.02
Acidification Potential (moles of H+ eq)	2.30E+01	\$0.02	\$0.49	\$0.00
HH Respiratory Effects Potential (kg PM2.5 eq)	1.29E-01	\$12.40	\$1.60	\$0.02
Eutrophication Potential (kg N eq)	5.65E-04	\$0.32	\$0.00	\$0.00
Ozone Depletion Potential (kg CFC-11 eq)	1.69E-11	\$55.00	\$0.00	\$0.00
Smog Potential (kg NOx eq)	1.05E-02	\$1.08	\$0.01	\$0.00
		Total	\$4.02	\$0.04

Externality Costs of Various Fuels

Fuel Type	External Cost
1000 kWh of electricity (Maryland)	\$39.83
1000 kWh of electricity (US average)	\$30.96
1 short ton of steam (Veolia, Baltimore)*	\$10.04
1 short ton of steam (100% N. Gas)	\$11.36
1000 ton.hrs chilled water (Veolia, Baltimore)	\$48.11
1000 ton.hrs chilled water (US Average)	\$47.53
1000 L (264 US gall.) of Fuel Oil	\$97.70
*Baltimore Veolia Steam: 60% municipal solid waste gas	e, 40% natural

Discounting Externality Costs in LCCA

Environmental impacts can have a cumulative long term effect – spanning generations. Discounting at rates of more than 3% leads to nearly zero \$ impact at year 100, which allows present consumption at the expense of future generations

Objective #2 - Whole Building Benchmarking

Benchmark the life cycle embodied material and operating energy environmental effects of 3 GSA buildings in Baltimore

- Use readily available LCA tools with the aim to make benchmarking replicable
- Buildings are of various vintages, but modeled as built today
- Tool and output provide a basis for assessing potential recommendations going forward

LCA Defined

Life Cycle Assessment

... tracks the physical environmental flows from and to the environment and the potential environmental impacts throughout a product's life cycle from raw material acquisition through production, use, end-of-life treatment and final disposal.

[ISO 14040:2006]

LCA Example – Electricity from coal combustion

LCA Tools:

Athena Impact Estimator for Buildings software

- Whole building LCA focus (structure and envelope)
- Capable of including operating energy effects

NIST's BEES software

- Interior product fit-out focus (finished surfaces)
- LCCA component too

Athena Impact Estimator for Buildings

ainable Materials

LCA Tools

- Both the IE and BEES are concept or schematic design tools.
 - Project called for forensic analysis of existing buildings using provided drawings
- Both tools support US EPA (TRACI)* impact categories

Global Warming	Fossil Fuel Consumption
Acidification	Smog Formation
Eutrophication	Respiratory effects
Ozone depletion	

*Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI)

LCA Benchmark Results (per m²⁾

Embodied and Annual Operating Global Warming Potential

- All 3 buildings dominated by operating energy effects
- Equivalent to 2 to 5 years of embodied effects
- Typically operating energy accounts for 80% of the total GWP over 75-yr building life
- For Garmatz and Customs House, operating energy GWP value is closer to 95%

Closer Look at Operating Energy Impact

Garmatz Annual Operating Energy - % Contribution by Fuel Type

LCA of Sustainability Measures

Measures and Tools

- 24 improvement measures assessed from a life cycle perspective (physical environmental flows + externality effects)
 - 10 general measures LEED/GSA Sustainable Guidelines oriented, modeled using an average US perspective
 - 14 were Baltimore building specific, modeled specific to the building's location and unique source energy
- Some measures had both an embodied and operating energy component (PV), others were only operating energy oriented (reduce plug loads) and others were more operational (cleaning products)

LCA of Sustainability Measures

Measures and Tools

....continued

- Tools used to estimate physical environmental flows:
 - Impact Estimator for Buildings (embodied and operational)
 - BEES Building for Environmental and Economic Sustainability
 - EPA WaRM Model solid waste management
 - EPA "Climate Leaders Simplified GHG Emissions Calculator"
 - SimaPro LCA modeling tool with background databases
- With the environmental flows per impact category determined for each recommendation, it was a matter of applying the externality costs per category indicator

Sustainable Measures Results

Measure		Change in 20-yr. GWP	Total 20-yr. External cost
		(m. tons CO2e)	(\$)
	General Recommendations		
1	Improve Solid Waste Mgmt	(3,429)	\$(100,000)
2	Increase Air Ventilation	215	\$14,000
3	Improve Refrigerant Management	(9)	\$(600)
4	Switch to Green Cleaning Products	(1.5)	\$(70)
5	Decrease Single Passenger Commuting	(3,749)	\$(110,000)
6	Increase Water Efficiency of Landscaping	(0.5)	\$(35)
7	Reduce Interior Water Use	(353)	\$(22,000)
8	Reduce Mercury in Lighting	n/a	(3)
9	Purchase Renewable Energy Certificates	(59,000)	\$(3,700,000)
10	Install On-site PV Renewable Energy	(888)	\$(60,000)

Sustainable Measures Results

Measure		Change in 20-yr. GWP	Total 20-yr. External cost
		(m. tons CO2e)	(\$)
	Garmatz Courthouse Specific		
11	Install Back Pressure Turbine	(3,118)	\$(210,000)
12	Replace Air Handling Units	(1,166)	\$(80,000)
13	Add Cool Roof & Insulation	604	\$(27,000)
14	Reduce Plug Loads	(1,100)	\$(69,000)
15	Improve Lighting Efficiency	(3,020)	\$(190,000)
	Total Garmatz Building	(7,800)	\$(570,000)

Results of LCCA and LCCA with Externality Calculations

Results of LCCA and LCCA with Externality Calculations

#	Measure	Direct Cost NPV	Composite NPV	Building	
1.	Solid Waste Management	\$36,810	\$126,435	General	
2.	Indoor Air Quality	(\$40,043)	\$913 <i>,</i> 590	General	
3.	Refrigerant Management	\$74	\$596	General	
4.	Green Cleaning	\$1,438	\$1,498	General	
5.	Transportation	(\$516,995)	\$976 <i>,</i> 865	General	
6.	Landscaping	\$368,339	\$368,369	General	
7.	Indoor Water Use	\$23,446	\$41,153	Garmatz	
8.	Mercury in Lighting	\$20,792	\$20,797	General	
9.	Off-Site Renewable Energy	(\$64,090)	\$3,175,016	Garmatz	
10.	On-Site Renewable Energy	(\$139,199)	(\$88,752)	Fallon	
11.	Co-Generate Electricity	(\$243,578)	(\$61,552)	Garmatz	
12.	Air Handling Unit Replacement	(\$50,882)	\$17,354	Fallon	
13.	Cool Roof	(\$4,962,505)	(\$4,939,227)	Garmatz	
14.	Reduce Plug Loads	\$97 <i>,</i> 478	\$157,410	Garamtz	
15.	Lighting Retrofits	\$166,627	\$320,128	Garmatz	
16.	Air Handling Unit Replacement	(\$2,482)	\$12,747	Custom House	
17.	Green Roof	(\$295,405)	(\$297,122)	Custom House	
18.	Replace Windows	(\$236,959)	(\$68,282)	Custom House	
19.	Install Heat Pipe	\$19,639	\$43,536	Custom House	
20.	Repair Glycol Run-Around Loop	\$388,589	\$545 <i>,</i> 060	Fallon	
21.	Enable Water-Side Economizer	\$862,021	\$1,072,337	Fallon	
22.	Deep Energy Retrofit—Add PV	(\$139,199)	(\$88,752)	Fallon	
23.	Deep Energy Retrofit—Replace Windows	(\$1,922,150)	(\$1,986,152)	Fallon	28
24.	Deep Energy Retrofit—GSHP	\$40	(\$3,913,027)	Fallon	20

Breakdown of the Measures

11 Measures with Positive NPVs – both Direct and External

- 7 Measures with Negative NPVs both Direct and External
- 1 Measure with Positive Direct NPV but Negative NPV after External Costs (GSHP)
- 5 Measures with Positive NPVs only after External Costs are applied

Measure Breakdown:

7 General Measures6 Garmatz Measures7 Fallon Measures (3 Deep Energy)4 Custom House Measures

Highest Composite NPV = RECs

Lowest Composite NPV = Cool Roofs (or GSHP, depending on savings)

LEED EBOM and Guiding Principles

LEED EBOM Category	GP	Credit(s)	Details
Sustainable Sites		SSc4	Transportation (Measure 5)
		SSc7.2	Cool Roof (M 13), Green Roof (M 17)
Water Efficiency	х	WEc3	Landscaping (Measure 6)
	х	WEc2	Indoor Water Use (Measure 7)
Energy & Atmosphere	х	EAc5	Refrigerant Management (Measure 3)
		EAc4	Off-Site Renewable Energy (Measure 9)
	х	EAc4	On-Site Renewable Energy (Measure 10)
	х	EAp2/c1	Energy Efficiency (M11, 12, 14-16, 18-24)
Materials & Resources	х	MRc7	Solid Waste (Measure 1)
		MRc4	Mercury in Lighting (Measure 8)
Indoor Environmental Quality	х	IEQc1.3/4	Increased Airflow/Filters (Measure 2)
	х	IEQc3.3	Green Cleaning (Measure 4)

Measure LEED Summary: SS = 3, WE = 2, EA = 15, MR = 2, IEQ = 2

Findings

- 3 Measures are Direct Costs to GSA that have significant Positive NPVs with Externalities
 - Indoor Air Quality
 - Transportation
 - Renewable Energy Credits
- 3 Measures with Negligible LCA Impact
 - Green Cleaning (\$1,438 Direct NPV, \$60 positive External Cost)
 - Mercury (\$20,792 Direct NPV, \$5 positive External Cost)
 - Refrigerant Management (\$74 Direct NPV, \$522 External Cost)
- 8 Measures had Direct Cost Positive NPVs
 - Recycling
 - Landscaping
 - Indoor Water Use
 - Energy: Plug Loads, Lighting, Heat Pipe, Glycol Run-Around, Water-Side Econ
- 60% of Measures focus on Energy
- External Costs for Energy-Related Measures increase positive NPVs by factor of 1.25 2.2

Findings

- 8 Big Ticket Measures had Negative NPVs even with External Costs
 - PV
 - Co-Generation
 - Cool Roof
 - Green Roof
 - Replace Windows at Custom House
 - (3) Deep Energy Retrofit Measures
- 5 Measures had Negative Direct Cost NPVs and shifted to Positive with External Costs
 - Indoor Air Quality
 - Transportation
 - RECs
 - AHU Replacement Garmatz
 - AHU Replacement Custom House
- Of these 5, all had significant External Cost Impacts

Measure 2: Indoor Air Quality - General

External Costs: Energy = \$0.02/ft² Productivity = (1.52/ft²) Area = 36,453 ft²

			Direct Costs	External Costs
B	20 1/2	Energy Costs	\$90,460	
	20 Year	Capital Costs	\$0	
	Costs	O&M Costs	\$20,216	
	CUSIS	Total	\$110,675	\$32,191
20 Yea	20 1/2	Energy Costs	\$120,755	
	20 rear	Capital Costs	\$1,609	
	Costs	O&M Costs	\$28,355	
	0313	Total	\$150,719	(\$921,442)
	Net Prese	ent Value (NPV)	(\$40,043)	\$953,633
	Composite NPV		\$913	3,590

Annual Incremental Costs:

Direct Cost = \$798 External Cost = (\$51,030) Net Cost = (\$50,232)

Measure 5: Transportation - General (1 of 2)

Baseline assumes GSA pays nothing for Commuting (Employee Cost) Proposed assumes GSA pays full price of Train Fare for 66 Commuters

Proposed Modeled with 2 Scenarios:

- 1. No cost for Building Occupant Gasoline Cost included
- 2. Cost for Building Occupant Gasoline Cost shown as External Cost

GWP of the reduced single passenger cars included in both Proposed Scenarios

Measure 5: Transportation - General (2 of 2)

Scenario 1: Gasoline Costs Excluded

Measure 7: Indoor Water Use - Garmatz

			Direct Costs	External Costs
Interior Water Use Reductions	20 Year Baseline Costs	Energy Costs	\$2,438,223	
		Capital Costs	\$90,668	
		O&M Costs	\$84,031	
		Total	\$2,612,922	\$823,386
	20 Year Retrofit Costs	Energy Costs	\$2,256,432	
		Capital Costs	\$242,073	
		O&M Costs	\$90,971	
		Total	\$2,589,476	\$805,680
	Net Present Value (NPV)		\$23,446	\$17,707
	Composite NPV		\$41,153	

GSA is not just talking about net zero energy...

The present value of presumed energy savings equals the capital available to spend and still reach a neutral NPV

Fallon Federal Building's "Deep Savings Budget"

	MMBtu	MMBtu	USD	% decrease	Target	MMBtu	USD	USD	USD	USD	USD	USD
FACILITY	TOTAL SITE ENERGY USE	TOTAL SOURCE ENERGY USE	TOTAL COST	TARGET ENERGY GOAL	PORTFOLIO MANAGER SCORE	TARGET SITE ENERGY USE	TARGET ENERGY COST	ANNUAL DIRECT COST SAVINGS	ANNUAL EXTERNAL COST SAVINGS	NPV OF DIRECT COST SAVINGS*	NPV OF EXTERNAL COST SAVINGS*	COMPOSITE NPV OF COST SAVINGS*
Office Building	78,733.74	148,803.10	\$2,056,967	50%	98	39366.871	\$1,028,484	\$1,028,484	\$415,665	\$12,567,038	\$ 7,243,448	\$ 19,810,486

Conducted a pre-feasibility, order-of-magnitude estimate of capital cost required to achieve such deep savings

 \leftrightarrow

Indianapolis City-County Building (1962) 731,000 SF high rise ENERGY STAR rating 50 -> 95 Cost: \$11/SF Fallon Federal Building (1973) 735,000 SF high rise ENERGY STAR rating 67 -> 98(?) Cost: \$11+(?)/SF The Fallon Building could achieve 50% energy savings within a Deep Savings Budget based on composite cost

	Estimated Capital Cost (\$/SF)	Deep Savings Budget Based on Direct Cost Savings (\$/SF)	Deep Savings Budget Based on Composite Cost Savings (\$/SF)
City-County Building Total	11		
Windows	2.9		
60kW of PV	0.8		
Drilling for Ground Source Heat Pump	3.8		
Total	18.5	17.1	27.0

GSA can replicate these methods to estimate external cost of a building throughout its life cycle

Risk management can lead to lower discount rates and could help GSA account for non-traditional value

	#	Risk Description	Level	Potential Mitigation Plans
	1	Achieving a significant portion (up to half) of the energy savings will require occupant cooperation	High	 Engage occupants during analysis process via design charrettes/meetings Thoroughly research installed technology and get user testimonials Test improvements among certain groups before full rollout
	2	Energy prices may be far greater or less than the expected increase	Med	 Conduct sensitivity analysis to understand how energy prices impact the financial return Obtain long-term energy supply contract (e.g. a power purchase agreement) or technology
	3	Predicted energy use is not equal to what was projected	High	 Use best-in-class predictive modeling (including peer reviews) Create measurement & verification plan
Health co	ete	have not H	iah	- Ensure that the building occupants their
decrease	d; ity	employee has not increased	.9.1	activities, and the implemented retrofit measures are similar to the referenced studies

Measure 23: Deep Energy Retrofit, Windows - Fallon 🛛 📢 🧐 🖗

			Direct Costs	External Costs
ц	20.1/2	Energy Costs	\$24,742,686	
me	20 Year	Capital Costs	\$0	
ace	Costs	O&M Costs	\$0	
tepl	Costs	Total	\$24,742,686	\$9,270,675
Ň	20 Voor	Energy Costs	\$24,524,709	
opu	20 rear	Capital Costs	\$2,140,128	
Vi	Costs	O&M Costs	\$0	
R		Total	\$26,664,836	\$9,334,677
ä	Net Present Value (NPV)		(\$1,922,150)	(\$64,002)
		Composite NPV	(\$1,98	86,152)

		Direct Costs	External Costs	Composite Costs
Α.	Deep Savings Budget (\$ in NPV)	\$12,567,038	\$7,243,448	\$19,810,486
В.	Measure NPV (\$)	(\$1,901,882)	(\$64,002)	(\$1,965,884)
C.	Measure Installed Cost (2012 \$ at Year 0)	\$2,140,128	\$127,115	\$2,267,242
D.	Remaining Budget (A - C)	\$10,426,910	\$7,116,333	\$17,543,244
E.	Percent of Budget (C/A)	17.03%	1.75%	11.4%

2.1% of Target Energy Savings, 17% of Budget

Garmatz Deep Savings – Window Analysis

			Direct Costs	External Costs
	20.14	Energy Costs	\$14,879,407	
SWC	20 Year	Capital Costs	\$0	
pdc	Baseline	O&M Costs	\$0	
Ň	COSIS	Total	\$14,879,407	\$7,074,125
natz	20.V.e.r	Energy Costs	\$13,122,692	
am	20 Year	Capital Costs	\$2,567,350	
0	Costs	O&M Costs	\$0	
DER	COSIS	Total	\$15,690,042	\$6,474,419
	Net Present Value (NPV)		(\$810,636)	\$599,706
		Composite NPV	(\$21	0,930)

		Direct Costs	External Costs	Composite Costs
Α.	Deep Savings Budget (\$ in NPV)	\$8,119,317	\$4,559,609	\$12,678,926
Β.	Measure NPV (\$)	(\$810,636)	\$599,706	(\$210,930)
C.	Measure Installed Cost (2012 \$ at Year 0)	\$2,567,350	\$113,669	\$2,681,019
D.	Remaining Budget (A - C)	\$5,551,967	\$4,445,940	\$9,997,907
Ε.	Percent of Budget (C/A)	31.6%	2.5%	21.1%

31.4% of Target Energy Savings, 31.6% of Budget

Potential Next Steps

- Seeking a "business as usual" project to include LCA
 - Feasibility Study
 - BER
 - Energy Audit
 - Etc.
- Collaboration Across Regions
- National Sustainability Council FY13 PT Goal
- Begin looking at emissions reporting as a procurement factor
 - In support of the Federal Vendor and Contractor Sustainability Considerations pilot program

Conclusions and Recommendations

Feedback? Questions?

Region 3 Contacts:

Joe Parisi – <u>joseph.parisi@gsa.gov</u> Kevin Funk – <u>kevin.funk@gsa.gov</u> Chris Mattingly – <u>christopher.mattingly@gsa.gov</u> **Reference Slides**

Measures 1 - 24

Measure 1: Solid Waste Management - General

			Direct Costs	External Costs
	20.1/	Energy Costs	\$0	
	20 Year	Capital Costs	\$0	
0	Costs	O&M Costs	\$326,151	
aste	Costs	Total	\$326,151	\$11,230
×	20.1/	Energy Costs	\$0	
olic	20 fedi	Capital Costs	\$0	
S	Costs	O&M Costs	\$289,341	
	COSIS	Total	\$289,341	(\$78,395)
	Net Present Value (NPV)		\$36,810	\$89,625
		Composite NPV	\$12	6,435

Measure 2: Indoor Air Quality - General

External Costs: Energy = \$0.02/ft² Productivity = (1.52/ft²) Area = 36,453 ft²

			Direct Costs	External Costs
	20 1/2	Energy Costs	\$90,460	
	20 Year	Capital Costs	\$0	
	Baseline	O&M Costs	\$20,216	
	CUSIS	Total	\$110,675	\$32,191
A	20 Voor	Energy Costs	\$120,755	
	20 rear	Capital Costs	\$1,609	
	Costs	O&M Costs	\$28,355	
	0313	Total	\$150,719	(\$921,442)
	Net Present Value (NPV)		(\$40,043)	\$953,633
	Composite NPV		\$913	3,590

Annual Incremental Costs:

Direct Cost = \$798 External Cost = (\$51,030) Net Cost = (\$50,232)

Measure 3: Refrigerant Management - General

			Direct Costs	External Costs
t	20 Vaar	Energy Costs	\$5,972	
nen	20 Year	Capital Costs	\$4,699	
gen	Costs	O&M Costs	\$22,999	
ana		Total	\$33,670	\$2,358
ť	20 Veer	Energy Costs	\$4,712	
ran	20 Year Potrofit	Capital Costs	\$5 <i>,</i> 886	
ige	Costs	O&M Costs	\$22,999	
Refr		Total	\$33,597	\$1,836
	Net Present Value (NPV)		\$74	\$523
		Composite NPV	\$5	596

Measure 4: Green Cleaning - General

			Direct Costs	External Costs
	20 1/2	Energy Costs	\$0	
ucts	20 Year	Capital Costs	\$0	
rodi	Costs	O&M Costs	\$19,114	
g PI	Costs	Total	\$19,114	\$434
nin	20 Veer	Energy Costs	\$0	
Clea	20 Year	Capital Costs	\$0	
en (Costs	O&M Costs	\$17,676	
Gre	COSIS	Total	\$17,676	\$374
	Net Present Value (NPV)		\$1,438	\$60
		Composite NPV	\$1,	,498

Measure 5: Transportation - General (1 of 2)

Baseline assumes GSA pays for Train Passes

Proposed = 2 Scenarios:

- 1. No cost for Building Occupant Gasoline Cost included
- 2. Cost for Building Occupant Gasoline Cost shown as External Cost

Measure 5: Transportation - General (2 of 2)

Scenario 1: Gasoline Costs Excluded

Measure 6: Landscaping - General

			Direct Costs	External Costs
	20 1/2	Energy Costs	\$5,148	
	20 Year	Capital Costs	\$331,200	
60	Costs	O&M Costs	\$88,440	
pin	Costs	Total	\$424,788	\$69
lsca	20 Voor	Energy Costs	\$2,511	
anc	20 rear	Capital Costs	\$30,380	
_	Retrofit	O&M Costs	\$23,559	
	COSIS	Total	\$56,450	\$39
	Net Present Value (NPV)		\$368,338	\$30
		Composite NPV	\$36	8,369

Measure 7: Indoor Water Use - Garmatz

			Direct Costs	External Costs
ons		Energy Costs	\$2,438,223	
lcti	20 Year	Capital Costs	\$90,668	
edu	Costs	O&M Costs	\$84,031	
se R	COSIS	Total	\$2,612,922	\$823,386
rŪŝ	20 Veer	Energy Costs	\$2,256,432	
ate	20 Year	Capital Costs	\$242,073	
۲	Costs	O&M Costs	\$90,971	
e rio	COSIS	Total	\$2,589,476	\$805,680
Inte	Net Prese	ent Value (NPV)	\$23,446	\$17,707
		Composite NPV	\$41	,153

Measure 8: Mercury in Lighting, T8 XLL - General (1 of 2)

			Direct Costs	External Costs
ы	20 1/2	Energy Costs	\$90,278	
	20 Year	Capital Costs	\$3,611	
ntin	Costs	O&M Costs	\$0	
Ligh	CUSIS	Total	\$93,888	\$19
/ in	20.1/2	Energy Costs	\$72,209	
Cuno	20 fedi	Capital Costs	\$6,110	
/er	Costs	O&M Costs	\$0	
2	COSIS	Total	\$78,319	\$14
	Net Prese	ent Value (NPV)	\$15,569	\$6
		Composite NPV	\$15	,575

Measure 8: Mercury in Lighting, T5 - General (2 of 2)

			Direct Costs	External Costs
50	20 1/2 2 2	Energy Costs	\$90,278	
	20 Year	Capital Costs	\$3,611	
ntin	Baseline	O&M Costs	\$0	
Ligh	COSIS	Total	\$93,888	\$19
/ in	20.1/2-22	Energy Costs	\$61,885	
Curc	20 Year	Capital Costs	\$11,212	
/er	Costs	O&M Costs	\$0	
2	COSIS	Total	\$73,097	\$14
	Net Prese	ent Value (NPV)	\$20,792	\$5
		Composite NPV	\$20	,797

Measure 9: Renewable Energy Credits - Garmatz

			Direct Costs	External Costs
dits	20 1/2	Energy Costs	\$0	
	20 Year	Capital Costs	\$0	
Cre	Baseline	O&M Costs	\$0	
e rgy	COSIS	Total	\$0	\$0
Ene	20.1/	Energy Costs	\$0	
ble	20 Year	Capital Costs	\$64,090	
wa	Costs	O&M Costs	\$0	
ene	COSIS	Total	\$64,090	(\$3,239,106)
R	Net Present Value (NPV)		(\$64,090)	\$3,239,106
	Composite NPV		\$3,17	75,016

Measure 10: Photovoltaics - Fallon

			Direct Costs	External Costs
ergy	20 1/2	Energy Costs	\$11,327,571	
	20 Year	Capital Costs	\$0	
e En	Baseline	O&M Costs	\$0	
able	CUSIS	Total	\$11,327,571	\$0
ewä	20.1/2-2-2	Energy Costs	\$11,239,140	
Ren	20 Year	Capital Costs	\$222,000	
ite I	Costs	O&M Costs	\$5,630	
n si	COSIS	Total	\$11,466,770	(\$50,447)
0	Net Prese	ent Value (NPV)	(\$139,199)	\$50,447
		Composite NPV	(\$88	3,752)

Measure 11: Co-Generate Electricity - Garmatz

			Direct Costs	External Costs
		Energy Costs	\$8,491,729	
ity	20 Year	Capital Costs	\$0	
ctric	Costs	O&M Costs	\$0	
Ele	CUSIS	Total	\$8,491,729	\$6,817,572
ate	20 Voor	Energy Costs	\$8,216,387	
ner	20 fedi Potrofit	Capital Costs	\$495,000	
Ģ	Costs	O&M Costs	\$23,919	
S	COSIS	Total	\$8,735,306	\$6,635,547
	Net Prese	ent Value (NPV)	(\$243,577)	\$182,025
		Composite NPV	(\$61	.,552)

Measure 12: Replace Air Handling Units - Garmatz

			Direct Costs	External Costs
	20 1/2	Energy Costs	\$14,879,407	
	20 Year	Capital Costs	\$1,652,196	
ien	Costs	O&M Costs	\$36,798	
cen	COSIS	Total	\$16,568,401	\$6,830,856
pla	20 Veer	Energy Costs	\$14,738,417	
l Re	20 Year	Capital Costs	\$1,836,708	
HU	Costs	O&M Costs	\$44,158	
1	COSIS	Total	\$16,619,283	\$6,762,620
	Net Present Value (NPV)		(\$50,882)	\$68,236
		Composite NPV	\$17	,354

			Direct Costs	External Costs
	20 1/2	Energy Costs	\$14,879,407	
	20 Year	Capital Costs	\$547,139	
	Costs	O&M Costs	\$0	
ofs	COSIS	Total	\$15,426,546	\$5,863,940
I Rc	20 Voor	Energy Costs	\$14,814,940	
Co	20 rear	Capital Costs	\$5,574,111	
· ·	Costs	O&M Costs	\$0	
	COSIS	Total	\$20,389,051	\$5,840,661
	Net Prese	ent Value (NPV)	(\$4,962,505)	\$23,279
	Composite NPV		(\$4,93	39,227)

Measure 14: Reduce Plug Loads - Garmatz

			Direct Costs	External Costs
		Energy Costs	\$343,169	
5	20 Year	Capital Costs	\$0	
bad	Costs	O&M Costs	\$0	
g Lc	CUSIS	Total	\$343,169	\$168,892
Plu	20 Voor	Energy Costs	\$231,753	
nce	20 Year	Capital Costs	\$8,879	
sedi	Retrofit	O&M Costs	\$5,060	
	COSIS	Total	\$245,691	\$108,959
	Net Prese	ent Value (NPV)	\$97,478	\$59,933
		Composite NPV	\$15	7,410

Measure 15: Lighting Retrofits - Garmatz

			Direct Costs	External Costs
	20.1/2 - 20	Energy Costs	\$1,256,433	
	20 Year	Capital Costs	\$150,029	
fits	Baseline	O&M Costs	\$205,033	
etro	CUSIS	Total	\$1,611,494	\$618,358
g Re	20 Voor	Energy Costs	\$971,069	
tin	20 real	Capital Costs	\$188,055	
Ligh	Costs	O&M Costs	\$285,744	
	COSIS	Total	\$1,444,868	\$464,857
	Net Prese	ent Value (NPV)	\$166,627	\$153,501
		Composite NPV	\$32	0,128

ts			Direct Costs	External Costs
Unit	20.1/	Energy Costs	\$5,056,244	
вu	20 year	Capital Costs	\$1,750,681	
ndli	Costs	O&M Costs	\$32,198	
Hai	CUSIS	Total	\$6,839,124	\$2,013,931
Air	20.1/2	Energy Costs	\$5,030,804	
(2	20 fedi Potrofit	Capital Costs	\$1,772,164	
the	Costs	O&M Costs	\$38,638	
ace	COSIS	Total	\$6,841,606	\$1,998,702
epl	Net Present Value (NPV)		(\$2,482)	\$15,229
R		Composite NPV	\$12	,746

Measure 17: Green Roof - Custom House

			Direct Costs	External Costs
	20.14	Energy Costs	\$0	
	20 Year	Capital Costs	\$159,211	
·	Baseline	O&M Costs	\$15,865	
800	CUSIS	Total	\$175,076	\$2,009,853
en F	20 Voor	Energy Costs	\$0	
Bre	20 Year	Capital Costs	\$422,411	
Ŭ	Costs	O&M Costs	\$48,071	
	COSIS	Total	\$470,481	\$2,011,570
	Net Present Value (NPV)		(\$295,405)	(\$1,717)
		Composite NPV	(\$29	7,122)

Measure 18: Replace Windows – Custom House (1 of 2)

Scenario 1: No window replacement in Baseline

			Direct Costs	External Costs
	20 Year Baseline Costs	Energy Costs	\$4,741,663	
		Capital Costs	\$0	
SMO		O&M Costs	\$0	
ind		Total	\$4,741,663	\$1,745,527
N	20 Voor	Energy Costs	\$4,270,621	
lace	20 fedi	Capital Costs	\$1,021,844	
Rep	Costs	O&M Costs	\$0	
_	CUSIS	Total	\$5,292,465	\$1,577,331
	Net Prese	ent Value (NPV)	(\$550,802)	\$168,196
		Composite NPV	(\$38	2,606)

Measure 18: Replace Windows – Custom House (2 of 2)

Scenario 2:	Window ren	lacement in	Baseline at Year 5	
			Buschine at rear 5	

			Direct Costs	External Costs
	20 Year Baseline Costs	Energy Costs	\$4,741,663	
		Capital Costs	\$313,843	
Ň		O&M Costs	\$0	
ind		Total	\$5,055,506	\$1,746,099
lace W	20 Year Retrofit Costs	Energy Costs	\$4,270,621	
		Capital Costs	\$1,021,844	
Rep		O&M Costs	\$0	
		Total	\$5,292,465	\$1,577,422
	Net Present Value (NPV)		(\$236,959)	\$168,677
		Composite NPV	(\$68	3,282)

Measure 19: Install Heat Pipe - Custom House

			Direct Costs	External Costs
	20 Year Baseline Costs	Energy Costs	\$5,056,244	
		Capital Costs	\$0	
ipe		O&M Costs	\$0	
at P		Total	\$5,056,244	\$2,004,609
Install Hea	20 Year Retrofit Costs	Energy Costs	\$4,996,605	
		Capital Costs	\$40,000	
		O&M Costs	\$0	
		Total	\$5,036,605	\$1,980,712
	Net Present Value (NPV)		\$19,639	\$23,897
	Composite NPV		\$43	,536

Measure 20: Repair Glycol Run-Around Loop - Fallon 🛛 🔫 🧐 🞆

			Direct Costs	External Costs
doo	20 Year Baseline Costs	Energy Costs	\$24,742,686	
d L		Capital Costs	\$0	
our		O&M Costs	\$0	
-Ar		Total	\$24,742,686	\$10,607,188
Run	20 Year Retrofit	Energy Costs	\$24,316,300	
col		Capital Costs	\$32,112	
GΙγ		O&M Costs	\$5 <i>,</i> 685	
air	COSIS	Total	\$24,354,098	\$10,450,716
Rep	Net Present Value (NPV)		\$388,589	\$156,472
		Composite NPV	\$54	5,060

Measure 21: Enable Water-Side Economizer - Fallon

			Direct Costs	External Costs
omizer	20 Year Baseline Costs	Energy Costs	\$19,621,508	
		Capital Costs	\$0	
con		O&M Costs	\$0	
e e		Total	\$19,621,508	\$10,607,188
Enable water-sid	20 Year Retrofit	Energy Costs	\$18,444,456	
		Capital Costs	\$131,040	
		O&M Costs	\$183,991	
	COSIS	Total	\$18,759,487	\$10,396,872
	Net Present Value (NPV)		\$862,021	\$210,316
		Composite NPV	\$1,07	72,337

Measure 22: Deep Energy Retrofit, PV - Fallon

			Direct Costs	External Costs
0	2014	Energy Costs	\$24,742,686	
	20 Year Baseline Costs	Capital Costs	\$0	
Itai		O&M Costs	\$0	
ovo		Total	\$24,742,686	\$0
DER - Photo	20 Year Retrofit Costs	Energy Costs	\$24,654,255	
		Capital Costs	\$222,000	
		O&M Costs	\$5,630	
		Total	\$24,881,886	(\$50,447)
	Net Present Value (NPV)		(\$139,199)	\$50,447
		Composite NPV	(\$88	3,752)

		Direct Costs	External Costs	Composite Costs
Α.	Deep Savings Budget (\$ in NPV)	\$12,567,038	\$7,243,448	\$19,810,486
Β.	Measure NPV (\$)	(\$139,199)	\$50,447	(\$88,752)
C.	Measure Installed Cost (2012 \$ at Year 0)	\$613,324	\$4,579	\$617,903
D.	Remaining Budget (A - C)	\$11,953,714	\$7,238,869	\$19,192,583
E.	Percent of Budget (C/A)	4.9%	0.06%	3.1%

Measure 23: Deep Energy Retrofit, Windows - Fallon 🛚 📢 🌑 🖷

			Direct Costs	External Costs	
Ħ	20.1/2.2.1	Energy Costs	\$24,742,686		
me	20 Year Baseline Costs	Capital Costs	\$0		
ace		O&M Costs	\$0		
tepl		Total	\$24,742,686	\$9,270,675	
Ň	20 Year Retrofit Costs	Energy Costs	\$24,524,709		
opu		Capital Costs	\$2,140,128		
Vi		O&M Costs	\$0		
Ŀ.		Total	\$26,664,836	\$9,334,677	
ä	Net Present Value (NPV)		(\$1,922,150)	(\$64,002)	
	Composite NPV		(\$1,986,152)		

		Direct Costs	External Costs	Composite Costs
A.	Deep Savings Budget (\$ in NPV)	\$12,567,038	\$7,243,448	\$19,810,486
Β.	Measure NPV (\$)	(\$1,901,882)	(\$64,002)	(\$1,965,884)
C.	Measure Installed Cost (2012 \$ at Year 0)	\$2,140,128	\$127,115	\$2,267,242
D.	Remaining Budget (A - C)	\$10,426,910	\$7,116,333	\$17,543,244
Ε.	Percent of Budget (C/A)	17.03%	1.75%	11.4%

Measure 24: Deep Energy Retrofit, GSHP – Fallon (1 of 3)

	0			Direct Costs	External Costs
	rce Heat Pum	20 Year Baseline Costs	Energy Costs	\$24,742,686	
			Capital Costs	\$0	
			O&M Costs	\$0	
Scenario 1.			Total	\$24,742,686	\$9,267,606
Section 1.	bou	20.1/2	Energy Costs	\$24,742,686	
Zero Energy Savings	b d	20 fedi Potrofit	Capital Costs	\$2,777,832	
	Ino	Costs	O&M Costs	\$1,010,563	
	Ū		Total	\$28,531,082	\$15,718,472
	DER	Net Prese	ent Value (NPV)	(\$3,788,395)	(\$6,450,866)
			Composite NPV	(\$10,2	39,262)

Measure 24: Deep Energy Retrofit, GSHP – Fallon (2 of 3)

				Direct Costs	External Costs
	Ĭ,	20.14	Energy Costs	\$24,742,686	
	it Pi	20 year	Capital Costs	\$0	
	Hea	Costs	O&M Costs	\$0	
Scenario 2.	source		Total	\$24,742,686	\$9,267,606
Sechario 2:		20 Year Retrofit Costs	Energy Costs	\$20,954,250	
Neutral Direct Cost NPV	o pu		Capital Costs	\$2,777,832	
	Loui		O&M Costs	\$1,010,563	
	Ū.		Total	\$24,742,646	\$13,180,633
	DER	Net Present Value (NPV)		\$40	(\$3,913,027)
			Composite NPV	(\$3,9	12,987)

Measure 24: Deep Energy Retrofit, GSHP – Fallon (3 of 3)

•			Direct Costs	External Costs
Ē	20 Year Baseline Costs	Energy Costs	\$24,742,686	
it Pi		Capital Costs	\$0	
Hea		O&M Costs	\$0	
ce		Total	\$24,742,686	\$9,267,606
ino	20 Year Retrofit Costs	Energy Costs	\$15,112,905	
l o l		Capital Costs	\$2,777,832	
lno		O&M Costs	\$1,010,563	
<u>5</u>		Total	\$18,901,301	\$9,267,568
DER	Net Present Value (NPV)		\$5,841,385	\$37
	Composite NPV		\$5,84	1,423

		Direct Costs	External Costs	Composite Costs
Α.	Deep Savings Budget (\$ in NPV)	\$12,567,038	\$7,243,448	\$19,810,486
Β.	Measure NPV (\$)	\$5,841,385	\$37	\$5,841,423
C.	Measure Installed Cost (2012 \$ at Year 0)	\$2,777,832	\$21,792	\$2,799,624
D.	Remaining Budget (A - C)	\$9,789,206	\$7,221,656	\$17,010,862
Ε.	Percent of Budget (C/A)	22.1%	0.3%	14.1%

